NUMERICAL SIMULATIONS for 1+2 DIMENSIONAL NONLINEAR SCHRÖDINGER TYPE EQUATIONS
نویسندگان
چکیده
The nonlinear Schrödinger equation is of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrödinger equation. In this paper we introduce sequential and parallel numerical methods for numerical simulations of the 1+ 2 dimensional nonlinear Schrödinger type equations. The parallel methods are implemented on the rcluster multiprocessor system at the University of Georgia(UGA). Our preliminary numerical results have shown that these methods give good results and considerable speedup.
منابع مشابه
A numerical study of the Gaussian beam methods for one-dimensional Schrödinger-Poisson equations
As an important model in quantum semiconductor devices, the Schrödinger-Poisson equations have generated widespread interests in both analysis and numerical simulations in recent years. In this paper, we present Gaussian beam methods for the numerical simulation of the one-dimensional Schrodinger-Poisson equations. The Gaussian beam methods for high frequency waves outperform the geometrical op...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملSolving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions
In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملNumerical solution of a class of nonlinear two-dimensional integral equations using Bernoulli polynomials
In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficien...
متن کامل